UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY SAMPLE LOCALITY MAP AND RESULTS OF CARRIER DISTILLATION EMISSION SPECTROGRAPHIC ANALYSIS OF STREAM-SEDIMENT SAMPLES FROM THE CHANDLER LAKE QUADRANGLE, ALASKA By Harlan N. Barton Open-File Report 87-21 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS. ## CONTENTS | į. | Page | |---|---| | Studies related to AMRAP. Introduction Methods of study Sample media Sample collection Sample preparation. Sample analysis Spectrographic method. Other methods. Rock Analysis Storage System (RASS). Description of Data Table. References Cited. | 1
1
1
1
2
2
2
2
2
2
3 | | | J | | ILLUSTRATIONS | | | Plate 1. Map showing stream-sediment sample localities for Chandler Lake quadrangle, Alaskain poc | ket | | TABLE | | | Table 1. Spectrographic analyses of stream-sediment samples, Chandler Lake, Alaska | 4 | #### STUDIES RELATED TO AMRAP The U.S. Geological Survey is required by the Alaskan National Interests Lands Conservation Act (Public Law 96-487, 1980), to survey certain Federal lands to determine their mineral resource potential. Results from the Alaskan Mineral Resource Appraisal Program (AMRAP) must be made available to the public and be submitted to the President and the Congress. This report presents analytical results of a geochemical survey of the Chandler Lake quadrangle, Alaska. #### INTRODUCTION In June and July, 1981, the U.S. Geological Survey conducted a reconnaissance geochemical survey of the Chandler Lake 1° x 3° quadrangle and the western and central portion of the Killik River 1° x 3° quadrangle. This report presents the results of the samples from the Chandler Lake quadrangle. The quadrangle comprises about $3,600~\text{mi}^2$ in the north-central part of the Brooks Range. The area studied, approximately the western three-fourths of the southern or mountainous half of the quadrangle, is about $1,200~\text{mi}^2$ in area. The area is about 250~mi northwest of Fairbanks. Access is by means of chartered aircraft from Bettles. The southern boundary of the quadrangle is approximately along the Brooks Range divide. The core of the Brooks Range consists mostly of metamorphic and igneous rocks. North of this core of metamorphic and igneous rocks is a belt of intensely thrust-faulted sedimentary and minor mafic igneous rocks, which are mostly unmetamorphosed and are of Late Devonian to Triassic age. This belt covers approximately the southern third of the quadrangle. North of the mountains, the foothills of the Brooks Range consist of Cretaceous to Tertiary age deltaic rocks that were derived from the Brooks Range and prograded northward and eastward. These clastic rocks are deformed into long east-west trending anticlines and synclines and comprise the northern two-thirds of the quadrangle. The individual formations have been described in more detail by Brosge and others (1979) and Mull and others (1982). The topographic relief in the mountainous area is about 4,000 ft with a maximum elevation of 7,610 ft. All but the steeper slopes are covered with tundra and underlain by permafrost. The climate is arctic continental. ## **METHODS OF STUDY** #### Sample Media Analyses of the stream-sediment samples represent the chemistry of the rock material eroded from the drainage basin upstream from each sample site. Such information is useful in identifying those basins which contain concentrations of elements that may be related to mineral deposits. ### Sample Collection Samples were collected at 153 sites (plate 1). At nearly all of those sites, both a stream-sediment and a heavy-mineral-concentrate sample were collected. All heavy-mineral-concentrate samples were lost in shipment to the laboratory. Sampling density was about 1 sample site per 8 mi². The area of the drainage basins sampled ranged from 2 mi² to 20 mi². The stream-sediment samples consisted of active alluvium collected primarily from first-order (unbranched) and second-order (below the junction of two first-order) streams as shown on USGS topographic maps (scale = 1:250,000). Each sample was composited from several localities within an area that may extend as much as 25 ft from the site plotted on the map. ## Sample Preparation The stream-sediment samples were air dried, then sieved using 30-mesh stainless steel sieves. The portion of the sediment passing through the sieve was saved for analysis. ## Sample Analysis ## Spectrographic method The stream-sediment samples were analyzed for 9 elements using a semiquantitative, carrier distillation emission spectrographic method (Barton, 1986). The elements analyzed and their lower limits of determination in parts per million are: Sb, 5; As, 20; Bi, 0.1; Cd, 1; Cu, 1; Pb, 2; Ag, 0.1; Sn, 0.1; and Zn, 2. Spectrographic results were obtained by visual comparison of spectra derived from the sample against spectra obtained from standards made from pure oxides and carbonates. Standard concentrations are geometrically spaced over any given order of magnitude of concentration as follows: 10, 5, 2, 1, and so forth. Samples whose concentrations are estimated to fall between those values are assigned values of 7, 3, 1.5, and so forth. Values determined are given in parts per million (micrograms/gram). Analytical data for stream-sediment samples from the Chandler Lake 1° x 3° quadrangle are listed in Table 1. ### Other methods These Chandler Lake stream-sediment samples were also analyzed for 31 elements by the emission spectrographic method of Grimes and Marranzino (1968) and for Au, Cu, Zn, Sb, Cd, and As by atomic absorption (Ward and others, 1969). These data, along with data from the adjacent Killik River quadrangle, are presented by Barton and others (1982). ### **ROCK ANALYSIS STORAGE SYSTEM** Upon completion of all analytical work, the analytical results were entered into a computer-based file called Rock Analysis Storage System (RASS). This data base contains both descriptive geological information and analytical data. Any or all of this information may be retrieved and converted to a binary form (STATPAC) for computerized statistical analysis or publication (VanTrump and Miesch, 1977). #### DESCRIPTION OF DATA TABLE Table 1 is arranged so that column 1 contains the USGS-assigned sample numbers along with a "CL" prefix for Chandler Lake and an "S" suffix to indicate a stream sediment. These numbers correspond to the numbers shown on the site location maps (plate 1). Columns for As, Sb, and Bi are not included in the table. These elements were sought but not detected in any samples. A letter "N" in the table indicates that a given element was looked for but not detected at the lower limit of determination for that element. If an element was observed but was below the lowest reporting value, a "less than" symbol (<) was entered in the tables in front of the lower limit of determination. #### REFERENCES CITED - Barton, H. N., 1986, Emission spectrographic determination of volatile trace elements in geologic materials by a carrier distillation technique: Journal of Geochemical Exploration, v. 25, p. 367-378. - Barton, H. N., Odland, S. K., O'Leary, R. M., and Day, G. W., 1982, Geochemical data for the Killik River and Chandler Lake quadrangles, Alaska: U.S. Geological Survey Open-File Report 82-1026, 52 p. - Brosge, W. P., Reiser, H. N., Dutro, J. T., Jr., and Nilsen, T. H., 1979, Geologic map of Devonian rocks in parts of the Chandler Lake and Killik River quadrangles, Alaska: U.S. Geological Survey Open-File Report 79-1224, p. - Grimes, D. J., and Marranzino, A. P., 1968, Direct-current arc and alternating-current spark emission spectrographic field methods for the semiquantitative analysis of geologic materials: U.S. Geological Survey Circular 591, 6 p. - Mull, C. G., Tailleur, I. L., Mayfield, C. F., Ellersieck, Inyo, and Curtis, S., 1982, New Upper Paleozoic and lower Mesozoic stratigraphic units, central and western Brooks Range, Alaska: The American Association of Petroleum Geologists Bulletin, v. 66, no. 3, p. 348-362. - VanTrump, George, Jr., and Miesch, A. T., 1977, The U.S. Geological Survey RASS-STATPAC system for management and statistical reduction of geochemical data: Computers and Geosciences, v. 3, p. 475-488. - Ward, F. N., Nakagawa, H. M., Harms, T. F., and Van Sickle, G. H., 1969, Atomic-absorption methods of analysis useful in geochemical exploration: U.S. Geological Survey Bulletin 1289, 45 p. | N 2 - Q O | 100
2 30
300
300 | 70
300
100
1,000 | 150
150
100
100 | 7 20
2 20
2 00
5 0 | 30
15
15
15
15
15
15
15
15
15
15
15
15
15 | 000 C C C C C C C C C C C C C C C C C C | | • | |-----------|--|---|---|--|--|--|--|-------| | CD-SN | Ω |
 | - * * * * * * * * * * * * * * * * * * * | , x x x , | | • = • • • • • • • • • • • • • • • • • • | x.x | ŗ. | | CD-PB | r4455 | W | ጉክጭውክ | อีพถักษ | 50urr | 20,20 | rō <u>0</u> 000rn 5mrn6 | 20 | | no-ao | 0 C W 8 R 8 | 000 m c 000 m c | 00000 | 000000 | 0 0 0 0 m | 0011
0010
0010
0010
0010 | 00 00000 00000 | 0.0 | | CD-CD | ***** | 2 | ~ . * * * * * * * * * * * * * * * * * * | OW = 0 W | **** | 0000 00 | X | 2.0 | | CD-AG | ×××. | · · · · · · | ****** | ``
;; | ****. | xx | 20 00 VV | E. | | TUD | 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 t 2 t 0 t 0 t 0 t 0 t 0 t 0 t 0 t 0 t | 20
28
15
15 | 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 100 B | 212 00255
502 00255 | | | | NSI | 72
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2002 | 12851 | 1222
1222
1234
1234
1234
1234
1234
1234 | 600 | 855
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | | | 10 | 151
151
152
152
152 | 152
152
152
152
152 | 151
151
151
151 | 151
151
151 | 151
151
151
151 | 151
151
152
152
152
152 | | 2 | | | 47
47
55
55 | 58 68 C | 00 00 0 V | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 8
2
4
3
6 | 888 08888
888 8888 | | | | I run | 80000 | 00020 | M-04W | 660000 | m m vi vo o | EEEEE EEE | | _ | | LAT | 00000
00000 | 66666 | 0 0 0 0 0
0 0 0 0 0 | 6 6 6 6 6 6
8 8 8 8 8 | 00000
000000 | က်က္က်က်က္
လက္ဆရာတာ လာဆတ | ୬ ୬ ୦୦୦୦୦ ୦୦୦୦୦
୭୭ ୦୯୭୭୦ ୭୭୭୭୦ | | | Sample | CL256S
CL257S
CL258S
CL259S
CL260S | CL261S
CL264S
CL265S
CL266S | CL268S
CL259S
CL270S
CL271S | CL273S
CL274S
CL275S
CL276S
CL277S | CL278S
CL279S
CL280S
CL281S
CL281S | CL284S
CL284S
CL286S
CL287S
CL287S
CL288S
CL289S | 1294
1293
1293
1299
1299
1299
1309 | L 309 | | CD-2N | 10
150
20
50 | 200
3 30
200
200
20 | 7
7
7
7
8
9
8
9 | 0 0 0 5 T C | 2 50
2 20
2 20
2 20
2 20 | 000
000
000
000 | 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 200
200
200
200
200
200
200
200
200
200 | 30
20
100
150 | |---------------|---------------------------------------|---------------------------------------|---|--|--|--|---|--|----------------------------| | CD-SN | × | -
-
-
- | * | * * * * | ~~~~ | x | × | EE .×E | | | CD-PB | 2000 | ភិស ល ភិស | w 0 0 w r | - 22 t m D | 5 4 4 4 0 | 45 w 5 w | 2225 | 20110 | -244-5 | | CD-CU | 82778 | 0 0 0 0 0 | 00000 | 78780 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | W W W W W | 00000 | w w 0 0 w w | C000C | | 02-0 2 | | | E · E E E | E | ****** | * E . K . | | **** | xxxx. | | CD-AG | A A A A A A A A A A A A A A A A A A A | ` | ***** | *** | ****** | \$1
00 | ^^
* * * * * * * * * * * * * * * * * * | *** | EEE | | QD. | 200567 | 22220 | 2 8 8 8 5 E 5 E | 2002 | 50 00 00 00 00 00 00 00 00 00 00 00 00 0 | 0 5 8 5 5
0 5 8 5 5 | W 0 4 0 5 | 455 | 00000
00000 | | SIT | 24000 | 1777 | 3 3 4 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 23
17
10
58 | 59
11
11
36 | 20 U U O | 22
22
55
65 | 30000 | 500 60
200 60
200 60 | | LON | 152
152
152
152 | 152
152
152
151 | 151
151
151 | 151
151
150 | 150
151
151 | 151
152
152
152 | 152
152
151
151 | 152
152
152
152 | 152
152
152
152 | | 30 | 20799 | 30000 | 2 0 3 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 0448 | 2 M O N O | 22452 | 0 5 M M S | 475 | 0 W W W & | | TITU | | m 10 00 00 m | | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 44650 | 13 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 212 | r 0 0 0 0 | 2022 | | LAT | 2 2 2 2 2
2 2 2 2 2 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 6666 6 | 66666 | 0 0 0 0 0 0
0 0 0 0 0 0 | 0 0 0 0 0 0
0 0 0 0 0 0 | 888888 | 66666 | 66666 | | | | | | | | | | | | : } | CD-ZN | 100
800
700
100 | 00000 | 100
200
70
50
50 | 0000
0000
0000 | 20000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 130000 | | 28778 | |--------|--|---|---|--|--|---------------------------------------|--|--|--------------------------------------| | CD-SN | ;=;;; | E.LEE | E E | ** . * . | Z • Z • Z | ~ | * · · · * | = \[= \] | W | | CD-PB | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000 | 000
000
000
000 | 95955
80595 | 00000
00000 | 60 v v v | | 0 0 0 m m | ጉሙහשብ | | CD-CD | 00000 | 00000 | 00000 | 20000 | 20000 | 90000 | 00000 | 99999 | 60000 | | 00-00 | | · EEEE | × * * * * * * * * * * * * * * * * * * * | 000
000 | × | | # # . # E | EFEE | EEE | | CD-A3 |
 | , x , , | z
5555 | Z Z | 277
770
7000 | | | *
66. 6 | #
 | | 9 | 1000 | 20082 | 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ## 7 7 7 F | 55
30
30
30
80
80 | 73087 | 900 to 90 | 30 8 00 | \$0000 | | GIT | 49
15
21
28 | 9 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 34
27
27
20 | 22022 | 18
27
11
58 | 15 7 7 2 | 50 7 98 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | # 50 50
8 50 11 0 0 | | LON | 152
152
152
152 | 152
152
152
152 | 152
152
151
151 | 151
151
151
152 | 152
151
151
151 | 151
151
151
151 | 151
151
151
150 | 150
150
152
152 | 152
152
152
152 | | UDF | 15
20
20
3 | 2222 | 20700
00700 | 25
25
30
30
30
30
30
30
30
30
30
30
30
30
30 | 25
25
26
26
26 | 4120 | 58
73
8
8 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | # 12 # W W | | TIPU | 26000 | 9975 | 100 | 2 E E E E E | A 3 8 8 4 | 2444 | 91111 | £5 8 5 £ | 22
22
7
55 | | LAI | 6666 8 | \$ \$ \$ \$ \$ \$ \$ | 0 0 0 0 0
0 0 0 0 0 | 00000
00000 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 6666 | 0 0 0 0 0
0 0 0 0 0 | 66666 | 0 0 0 0 0
0 0 0 0 0 | | Sample | CL357S
CL358S
CL359S
CL360S
CL361S | CL362S
CL364S
CL364S
CL365S | CL367S
CL369S
CL369S
CL370S | CL372S
CL373S
CL374S
CL375S | CL377S
CL378S
CL379S
CL380S | CL383S
CL384S
CL384S
CL386S | CL387S
CL389S
CL389S
CL390S | CL3992S
CL3993S
CL431S
CL431S | C1403S
C1403S
C1405S
C1405S | TOTAL AND | CD-AG CD-CD | |-------------| | | | | | | | | | | | <.10 1.5 | | | | | | | | | | .10 | | | | | | | | | | | | 6.10 | | |